Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.225151

ABSTRACT

Cells must detect and respond to molecular events such as the presence or absence of specific small molecules. To accomplish this, cells have evolved methods to measure the presence and concentration of these small molecules in their environment and enact changes in gene expression or behavior. However, cells don't usually change their DNA in response to outside stimuli. In this work, we have engineered a genetic circuit that can enact specific and controlled genetic changes in response to small molecule stimuli. Known DNA sequences can be repeatedly integrated in a genomic array such that their identity and order encodes information about past small molecule concentrations that the cell has experienced. To accomplish this, we use catalytically inactive CRISPR-Cas9 (dCas9) to bind to and block attachment sites for the integrase Bxb1. Therefore, through the co-expression of dCas9 and guide RNA, Bxb1 can be directed to integrate one of two engineered plasmids, which correspond to two orthogonal small molecule inducers that can be recorded with this system. We identified the optimal location of guide RNA binding to the Bxb1 attP integrase attachment site, and characterized the detection limits of the system by measuring the minimal small molecule concentration and shortest induction time necessary to produce measurable differences in array composition as read out by Oxford Nanopore sequencing technology.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.28.225151

ABSTRACT

Neurological complications are common in patients with COVID-19. While SARS-CoV-2, the causal pathogen of COVID-19, has been detected in some patient brains, its ability to infect brain cells and impact their function are not well understood, and experimental models using human brain cells are urgently needed. Here we investigated the susceptibility of human induced pluripotent stem cell (hiPSC)-derived monolayer brain cells and region-specific brain organoids to SARS-CoV-2 infection. We found modest numbers of infected neurons and astrocytes, but greater infection of choroid plexus epithelial cells. We optimized a protocol to generate choroid plexus organoids from hiPSCs, which revealed productive SARS-CoV-2 infection that leads to increased cell death and transcriptional dysregulation indicative of an inflammatory response and cellular function deficits. Together, our results provide evidence for SARS-CoV-2 neurotropism and support use of hiPSC-derived brain organoids as a platform to investigate the cellular susceptibility, disease mechanisms, and treatment strategies for SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Nerve Degeneration
SELECTION OF CITATIONS
SEARCH DETAIL